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SUMMARY

This paper discusses a neural network tool for more effective aircraft design evaluations during wind

tunnel tests. Using a hybrid neural network optimization method, we have produced fast and reliable

predictions of aerodynamical coefficients, found optimal flap settings, and flap schedules. For

validation, the tool was tested on a 55% scale model of the USAF/NASA Subsonic High Alpha

Research Concept (SHARC) aircraft. Four different networks were trained to predict coefficients of

lift, drag, moment of inertia, and lift drag ratio (C L, C D, CM and L/D) from angle of attack and flap

settings. The latter network was then used to determine an overall optimal flap setting and for finding

optimal flap schedules.

INTRODUCTION

Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power

utilization. Thus, a method that reduces the time spent in a wind tunnel, as well as the work load

associated with a test, are of major interest to airframe manufacturers and design engineers.

Modem wind tunnels have become highly sophisticated test facilities used to measure a number

of performance features of aircraft designs. In this study we have chosen to consider only

determination of the coefficient of lift (C,_), coefficient of drag (CD), pitching moment (C u) and

lift/drag ratio (L/D) as functions of angle of attack and flap settings. In this paper we emphasize

prediction, but the techniques are applicable to other steps of wind tunnel testing as well.

Currently, a new design test is followed by extensive manual data fitting and analysis. To allow

researchers to interpolate between measurements, evaluation of the aircraft design is based on visual

inspection of curves. One way to automate the procedure is to f'md mathematical expressions to

describe the complex relationships between variables. Although neural networks are not the only

approach potentially able to perform this task, e.g., numerical aerodynamic simulations, such soft

computing methods provide a very cost effective approach. Spin-off benefits can also result from a

new approach and include increased automation of measurement processing and aids for checking

earlier calculations. The longer term benefits are a significant reduction in costs and faster
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development of new aircraft, or alternate tunnel uses such as more aerodynamically efficient

automotive design.

This paper is organized as follows: A short introduction to Multilayer Perceptrons (MLP) is given

and one powerful method we used (a variation on the Levenberg-Marquardt method) is presented.

Next, we describe how a subset of test measurements were used with the technique to train four

networks to predict aerodynamical coefficients and the L/D ratio, given angle of attack and flap

settings. We then present two applications. The first addresses the problem of determining an

"overall optimal" flap setting using a method based on integration of L/D vs. CL. The second

demonstrates an easy strategy to find optimal flap schedules. Finally, details of the software tool

set are given in an appendix as a supplement to documentation in the project code.

MULTILAYER PERCEPTRONS

The phrase "neural network" is an umbrella covering a broad variety of different techniques. The

most commercially used network type is probably the MLP network. See reference 1. An example of

a MLP network is shown in figure 1. In this study we used a two-layer network with tangent

hyperbolic activation functions in hidden layer units, and a linear transfer function in the output

units. A two-layer network is not always an optimal choice of architecture (goodness measured in

terms of the smallest number of weights required to obtain a given precision), but it is sufficient to

approximate any continuous function arbitrary well (ref. 2), and training is easier to implement and

faster in this case.

A MLP network is a special type of an "all-purpose" function, which in many recent situations has

shown an excellent ability for function approximation (ref. 3). The network shown in figure 1

corresponds to the following functional form

z_ w_

Figure 1. A three input, two output, two layer MLP network. The weights from the inputs set to 1

represent the biases. Here f/(x) = tanh(x) and Fj (x) = x.
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A special feature offered by this type of network is that it can be trained to approximate many
functions well, without requiring an extravagant amount of parameters (weights). This is discussed

in Sj/Sberg, et.al., (ref. 4). One disadvantage compared to other network types is that training is slow



becausethenetworkimplementsanon-linearregression,i.e.,thereis anonlinearrelationbetween
theadjustableparameters,theweights,andtheoutput.

In this study,wewereinterestedin enhancinggenericneuralnetworksfor wind tunneltest
estimation.Obtainingnetworktrainingdatais verycostly,e.g.,$3,000dollarspertunnelhourfor
theNationalFull-ScaleAerodynamicComplexatAmesResearchCenter.Consequently,only limited
datasetswereavailableandusuallyasbyproductsof previouslyscheduledtests.Thesizeof thedata
setimposesanupperlimit onhow manyweightsthenetworksshouldcontain.In practice,since
thereis alsouncertaintyassociatedwith themeasurements,thenumberof datapointsmustexceed
thenumberof weightsby asufficientlylargefactorto ensurethatgoodgeneralizationmaybe
achieved.Trainingtime,ontheotherhand,isnotof primeimportance.Manyargumentscanbe
madein favor of someform of MLP networksasthefight choicefor thegivenproblem.Thereal
problemis obtainingextremelyhighaccuraciescriticalfor commercialviability.

TRAINING

Thetrainingphaseis theprocessof determiningnetwork weights from a collected set of
measurement data. The treatment of different aerodynamical coefficients is essentially identical, so

we will consider a generic quantity 'y' instead. If the aircraft flaps are coupled, y becomes a function

of three different variables: Angle of attack (c¢), leading edge flap angle (LE), and trailing edge flap

angle (TE).

y = g0 (¢p) (2)

where

LE rE (3)

The function 'g' is unknown, but the wind tunnel tests provide us with a set of corresponding y - _0

pairs

i i ."

ZN = {[q9 ,y ],t = 1..... N} (4)

Naturally the measurements of y are not exact, but will be influenced in undesired ways from a
number of different sources. All measurement errors are grouped in one additive noise term, e

y = g0(q_)+ e (5)

The objective is now to train the neural network to predict y from

= _(tp) (6)

The predictor is found from the set of measurements, Z N, from here on denoted the training set.

Expressed precisely, we wish to determine a mapping from the set of measurements to the set of
functions contained in the chosen network architecture g(_0; 0)

Z N --> b (7)
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sothat _ is close to the "true" y. 0 is the parameter vector containing all adjustable parameters (in

this case, the network weights).

A common definition for goodness of fit in neural nets is the mean square error

1 :: 1 N

V(O)= --_ (yi_ _i(0))2 = _...._..___.,(g(0))2
2N i=1 /=1

(8)

Thus, training becomes a conventional unconstrained optimization problem. For various reasons

back-propagation, a flexible but somewhat ad hoc gradient search method, has been the preferred

training algorithm in the neural network community. Ease of implementation, utilization of the

inherent parallel structure, and the ability to work on large data sets are the main arguments justifying
the use of this method. However, in the present case where the data sets are of limited size, back-

propagation is not the best choice. Instead we have decided to use the so-called Levenberg-

Marquardt method for solving the optimization, since like conjugate gradient approaches it is in

many ways superior to back-propagation as well as most other gradient search methods. The

Levenberg-Marquardt method, independent of its neural implementation, is a work horse of many

optimization packages (ref. 5). Some important advantages of the method are speed, guaranteed

convergence to a (local) minima, numerical robustness, and minimal user-specified inputs are

necessary except for providing a network architecture. Moreover, as pointed out in Mor6 (ref. 6) the

method is surprisingly free of ad hoc solutions to achieve these benefits. Such advantages are

important properties in making a user-friendly, easy-to-apply tool, which is crucial in this case since

our objective was to create a generic methodology for application use and determine if in fact neural

networks were capable of performing the complex mappings required in nonlinear aero design.

The Levenberg-Marquardt method has numerous variations. The simplest strategy may be found in

the original contribution of Marquardt, while one adaptation to neural network training is discussed

in reference 7. The version used here belongs to the class of trust region methods found in Fletcher

(ref. 8). Just as back propagation, the Levenberg-Marquardt algorithm is an iterative search scheme

_k+_) = O_k)+ ld<k)h<k) (9)

From the current iterate 0 _k), a new iterate is found by moving a step of size/.#k) in direction h (k).

There exist several methods that fit into this structure. Their differences lay mainly in the way that a

search direction is determined. In back propagation, a search direction is chosen as the gradient of

the cost function evaluated at the current iterate

h(k) G(O _) =_V'(O _k)) - c3V(O) l
=

(10)

while the step size can be either constant or vary according to some adaptive scheme. For a given

cost function, the gradient is determined by

N ^i 1 N

1 _ 3_i(0) _i(o)___L V _t(O) _i(o)=__._t::l ¢(o)_i(o)G( O)= _. .= c_O N _ 30 ,=
(11)
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g/(0) denotesthegradientof thenetworkoutputw.r.t,eachof theweights,whentheinput is (pi

I[]/(0) =. 0_i(0) (12)

ao

Another alternative method is the Gauss-Newton algorithm. Although convergence is not guaranteed

and it suffers from severe numerical ill-conditioning, it provides an important basis for the

Levenberg-Marquardt method. The idea is at each iteration to minimize a cost function based on a

linear approximation of the prediction error

I'X'I['_N . r 0(k))_:
L(O) = --i|Ei(o(k')--_l[ft(o(k))] (0--

(13)]
2N i--i _

It is shown (ref. 8) that this approach will fit into the basic scheme by setting the step size to 1, and

the search direction to

h (k) = [R( _k))] -1 G( 0 (k)) (14)

R represents the "Gauss-Newton" approximation to the Hessian (V'(O)) and is defined by

1 N

R(0) ---_ ._., _ ((9)( _(0)) r (15)

In the Levenberg-Marquardt method however, the search direction is found as an "intelligent"

interpolation between the two previously mentioned directions as follows:

1) Create an initial parameter vector/_0) and an initial value ;t_)

2) Determine the search direction, h, by solving the following system of equations

3) Evaluate network and determine V(O (k) + h (k)) as well as the "prediction" of the error

V(O (k)) - L(O (k) +h (k))

4) V(O (k))- V(ff k)+ he))> 0.75[V(ffk)) - L( O(k'+ h(k))l _

IV [_k), +h(k) )15) V(O(k))--V(O(k)+hq'))<0.25[ ( J-L(Ok)

6)

7)

_(k)
_(k+l) = --

2

/_(k+X) = 2,_(k)

"O(k)'_ 0(k+l) 0(k) h(k)If VN(O (k) +h(k))< V_v( , then accept = + as a new iterate

If the stop criterion is not satisfied set k=k+l and go to 2). Otherwise set _9= 0 (k) and
terminate (16)

Clearly, if X is too large, the diagonal matrix will overwhelm the Hessian (R) in 2). The effect of

this is a search direction approaching the gradient direction, but with a step size close to 0. This is



importantto ensureconvergence,sincethecostfunctionalwaysmaybeminimizedby takingsmall
enoughstepsin thedirectionof thegradient.Ontheotherhand,if J, equalszero,themethodwill
coincidewith theGauss-Newtonmethod.Whatthenis asensiblestrategyfor adjustmentof J,?The
choiceis basicallyto decreaseJ, if theapproximationof erroris reasonableandviceversaif it is
not.This is just whatis testedin steps4) and5) of theabovealgorithm.If anewiterateleadsto a
decreasein costcloseto whatispredictedusingL(0), /_ is reduced. Since the right hand sides of 4)

and 5) always are positive, J, always is increased until a decrease in cost is obtained.

From Madsen (ref. 9) it follows that

[V(O(k)) - L(O (_ + h(k')] = l (--(h(k))rG(O(k_)+ (17)

which can be easily computed for use in step 3) and 4) of the procedure.

Some typical termination criteria for use in step 7) are:

a. The gradient is sufficiently close to zero.

b. The cost function is below a certain value.

c. A maximum number of iterations is reached.

d. /], exceeds a certain value.

Since the cost function will often have a number of local minima, it is important to run the training

algorithm multiple times, starting from different sets of initial weights. The set of trained weights

that leads to the lowest minima is then chosen.

GENERALIZATION

Before applying the above algorithm, a few comments should be made regarding mean square error

cost functions. Actually, the mean square error criterion is not really what we are most interested

in minimizing in this particular problem. This is especially so because the measurements available are

corrupted by noise. A far better measure of fit is the mean square error at "all possible"

measurements. This is what is known as the generalization error, the ability to predict new

measurements not seen during the training phase.

V(0) ---E{V(0)} (18)

Besides being unrealistic to compute in practice, this quantiV¢ does not give information about

whether the selected network architecture is a good choicea 0 depends on the training set and is

thereby a stochastic variable, which in turn means that V'(0) is a stochastic variable. Taking the

expectation of V(0) with respect to all possible training sets of size N, yields

J(M)=_E{V(O)} (19)
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which iscalledtheaverage generalization error or model quality measure (ref. 10). Assuming the

existence of set of "true" weights, 00, allowing us to exactly describe the data-generating function by

the network architecture (g(_0; 00 ) = go(g°)), and assuming the noise contribution is white noise

independent of the inputs, an estimate of the average generalization error may be achieved. This

estimate is known as Akaike's final prediction error (FPE) estimate. See ref. 10 for a derivation.

J(M)- N+dM V(O) (20)
N-d M

da4 is the total number of weights in the network, while N as before is the size of the training set.

The more we increase the size of the network, the more flexibility we add and the better we are able

to fit the training data. In other words, V(0) is a decreasing function of the number of weights in the

network. If too much flexibility is added, one may expect that both the essential properties of the

training set are captured and unfortunately, the properties of the particular noise sequence present in

the data. This is commonly known as over fitting, and is exactly the dilemma Akaike's FPE

expresses. There exist two usual approaches to deal with this problem. One is to find an 'optimal'
network architecture (an architecture that minimizes J). The most successful strategy developed so

far is pruning (see ref. 11). However, in order for it to be applicable, the data set should not be too

limited compared to the required network size.

A second approach is to introduce a simple yet powerful extension to the cost function, called

Regularization (or weight decay). Given the previously mentioned assumptions, it is a known result

that the least squares estimate is unbiased. But unfortunately

^ 2 2E{ll01L2}=ll0U2+-_-- tr (R -1) (21)

In other words, when minimizing the mean square error the weight estimates tend to be exaggerated.

Imposing a punishment for this tendency in the cost function is called (simple) Regularization

w(0)= e (0)+2_ 11011
2N i=l

(22)

The simple Regularization approach leads to biased weights, since the weights are pulled towards 0.

But by choosing the scalar sufficiently small, it can be shown that the average generalization error

will decrease. See Sj6berg and Ljung (ref. 12) for a proof. Finding the optimal value is not a trivial

task. More detailed discussions may be found in references 13 and 14. A rule of thumb is that a little

Regularization usually helps. Other nice properties about Regularization are that it significantly
reduces the number of local minima, as well as the number of required iterations to find a minimum.

The Regularization extension to the cost function clearly influences the training algorithm, but

incorporation is quite straightforward. In algorithm (16), we make the following changes:

The gradient of W becomes

•G(O) = W'(O) = --- _i (O)e' (0) + 50
N_.i=l

(23)



Also theHessianischanged,whichin turnchangestheexpressionfor determinationof thesearch
direction

R(O (_) + (-_ + _,(_)I h (k_ = G(O (k)) (24)

Since this expression from a numerical conditioning standpoint is the weak link of the training

algorithm, it should be noticed that a spin-off from regularization is a robustness increasing effect on

training, since the matrix (the term in brackets) will be moved further away from singularity. This is

performed as follows:

Substitute V for W in steps 3 to 6 of (16).

Also L is changed to:

0)=L(o)+ 1101122 (25)

leading to

[V(O(_)-7"(O(_ +h(k_)] = 2 (h(*_)rG(O(k_)-_ N
(26)

APPLYING NETWORKS TO THE MEASUREMENTS
/

The aircraft used for method validation was a 55% scale model of the SHARC aircraft. See

Picture 1.

Picture 1: SHARC aircraft mounted in the 40 x 80 ft. wind tunnel.

The test was conducted in the 40 x 80 ft. wind tunnel at NASA Ames Research Center part of the

National Full-Scale Aerodynamics Complex shown in Picture 2.



Picture 2: NationalFull-ScaleAerodynamicsComplex.

Thecontrolsurfacesusedin this studyincludedleadingedgeandtrailing edgeflaps.During teststhe
left andright controllersfor eachflapwerecoupled.Eachflaphassixdifferent setangles,thus
thirty-six flapcombinationswerepossible.Thetestinvolvedpickingaflapcombinationandvarying
angleof attackoveraprespecifiedrange,whilemeasuringlift, drag,andpitchingmoment.Twenty-
threeof thetotalof thirty-sixpossibleflapcombinationswereexaminedin thetest,andthe
measurementsweretakenatsixteendifferentanglesof attack(alpha)valuesfor eachcombination.
Table1presentstheorganizationof thefull datasetandhowthetwenty-threesubsetswereseparated
into trainingandtestsets,respectively.

Table 1.Organizationof thedatasetfor the 10%scalemodeltest."Train" indicatesthat the
subsetwasincludedin thetrainingset,similarly for "test".Theentiredatasetconsistsof
measurementsfrom 348differentalpha/LE/TEcombinations.

l _tl'E
0.000
0.333
0.500
0.667

0.000
Train
Train
Test
Train

0.167

Test
Test

0.333
Train
Train
Train
Train

0.500

Test

0.667
Train
Train

Train

1,000

Train

Train

Train

0.833 Test Test

1.000 Train Train Train Train

Despite the possible differences in complexity, four identical network architectures were chosen to

predict CL, Co, CM and L/D.
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one should test different architectures (or vary the regularization parameter) and pick one that leads to

a good compromise between having predictions close to the actual measurements and having the

intermediate predictions following smooth curves. Typical results obtained from applying the trained

networks to one of the six test sets are shown in figure 4.
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Figure 4. Comparison of test data and network predictions for LE=0.50 and TE---0.0.

It is difficult to come up with a good validity criterion in terms of an RMS value or a similar
measure for this problem. Basically the validation was done by visual inspection of plots like those

of figure 4. The predictions appear to be very close to the actual measurements, and taking the
uncertainty of the measurements into consideration, the predictions are definitely considered to be
satisfactory. L/D is harder to model than the 3 aerodynamical coefficients. An alternative way of

predicting this ratio is to divide the predictions of CL and C o

L"/ D= _L / (__ (27)

Unfortunately this strategy is very sensitive to prediction errors for small values of CD, and

compared to training on L/D directly, the performance was very poor. Notice that L/D is plotted

versus CL in figure 4. The reason why this figure is of particular interest will be explained in the

following section.
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ADVANCED APPLICATIONS

Because the neural networks have provided models that capture the relations between inputs and

outputs, other utilization beyond new point estimation is straightforward. Two applications are

considered here, both dealing with the problem of finding flap settings that ensure high

maneuverability.

Overall flap setting

If the plane is flown with minimal change in flap settings, it is desirable to keep the flaps in a

position that will ensure a high L/D over the topical flight envelope. In the current case this is

interpreted in terms of a performance index we want maximized. The criterion is the area below the

L/D vs. CL curve in the CL range [0.15, 0.55], as illustrated in figure 5.

J(LE, TE) = [0.55 L� D(C L, LE, TE)dC L
40.15

(28)

10:

I

0
C_k

Figure 5. A rough sketch of the principle.

Basically the entire surface (J) is useful, but we are particularly interested in the maximum point

J-= arg max J( LE, rE) (29)

{Le,re }

To find the areas (J), we need a way to express the L/D ratio as a function of CL. To obtain this, a

network is trained as the "inverse" function

& = Cc -_(C L , LE, rE) (30)

Since for fixed flap positions, CL vs. ot is an almost straight line over the necessary range of or,

modeling the inverse function is not harder than modeling the actual function. In general, C_ vs. o_

12



need not be one-to-one in the measured range, and if that is the case, one has to be extra careful

about the training. The inverse function network should only be trained in the o_ range where the

function actually is one-to-one. By using this new network in front of the L/D-network, we get a

predictor for L/D which depends on LE, TE, and CL.

Alternatively, a network L/D ( CL,LE, TE) might be trained directly, but for some reason this didn't

seem to give quite as good results. The performance criterion (J) was then evaluated for a large

number of flap combinations by applying numerical integration. The integration was carried out

using the trapezoidal rule

I]__ f(x)dx = h[½ f(x l) + f(x 2) +'." + f(XN__ ) + f(XN)] (31)

J was evaluated at 961 points (each flap was set in 31 different positions within their respective

ranges). For each combination L/D was evaluated at 101 different values of CL in the interval

[0.15;0.55]. The result is shown below (figs. 6 and 7), using three different representations.

O.5,

°

g

-1.5,

0

02

O.4

I 0 0,2
"rE IF

!
0.6

Figure 6. Surface plot of the integrated L/D for flap combinations of the 55% model.
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Figure 7. (a) The surface plot projected onto the TE-LE plane. (b) As a contour plot.
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Flap schedules

To ensure a high maneuverability at all times (i.e., for all angles of attack) it is desirable to constantly

position the flaps so that maximum L/D is obtained. Doing this is straightforward. For a particular

choice of alpha, the L/D-network is evaluated at a number of different flap combinations, and the

combination leading to maximum L/D is stored. This is then repeated for a large number of alpha

values. The result of this procedure is shown in figure 8.

01
• i

0.8

0.7

0.6

_0.5 ',

n- L

0.4

t

0.3

0.2 1

0.1

00 0.1 0,2

Flap angle vs. alpha (LE = solid. TE = dashed)

1"_jl ' ' ' '

/

0.3 04 0.5 0.6 0.7 08 ' 0.9

Alpha

Figure 8. The schedule for each of the two flaps. For 101 different values of angle of attack

maximum L/D was searched for among 31"31 flap combinations.

CONCLUSIONS AND FUTURE DIRECTIONS

The purpose of this study was threefold: To test the neural net method, to produce cost savings by

minimizing the number of required wind tunnel measurements, and to automate follow-on data

processing. We are very encouraged by the results obtained so far. In general, the predictions

provided by networks trained on less than 74% of the original set of measurements are considered to

lay within the tolerance ranges. Moreover, the peak in figure 6 matched closely the one found by the

conventional procedure. In December 1994, the tool was applied during test of a newly generated

50% scale model of the SHARC. Again with impressive results, indicating approximately 40%

savings (in this case certain alpha vales instead of certain flap combinations were discarded). A

substantial spin-off from the study has been to provide plots like the ones shown in figures 6-8. By

following conventional procedures, generating this type of plot is seldom realistic from a cost and

resource viewpoint. The current method is very rapid and extremely cost effective for this task.

We believe that neural networks will become an important tool in future NASA Ames efforts to

move directly from wind tunnel tests to virtual reality simulations of actual full scale aircraft flight

behavior. Being able to fly the plane at such an early stage would be a tremendous help to flight

engineers. Many bugs could be eliminated at a much earlier stage, which in turn would significantly
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cut expenses, as well as time spent on development. Preliminary simulations in our laboratory have

already demonstrated the principle. Efforts are now underway to explore the application of this

technique to the estimation of hypersonic flight performance.
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